AD-A144 319 COMPLETED
INFORMATION AND NULLS(U) STANFORD UNIV CA DEPT OF
COMPUTER SCIENCE A KELLER ET AL. APR 83
UNCLASSIFIED AFOSR-TR-84-0382 N00039-82-G-0250

ks J28 W2s
=S £
1l ‘:‘h""’ 22

s == =
25 lis g

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

1
UNCLASSII AD_ A 144 319 '\é/

SECURITY CLASSIFI

ENTATION PAGE
'a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED
2. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution
2. DECLASSIFICATION/DOWNGRADING SCHEDULE unlimited,

4. PERFORMING ORGANIZATION REPORT NUMBERI(S) S, MOK?&g&Orﬁ;RLZATgN!EF_O‘ONSﬁS%)

(1f applicable)

Air Force Office of Scientific Research

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL | 7s. NAME OF MONITORING ORGANIZATION
Stanford University

6¢c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)
Computer Science Department Directorate of Mathematical & Information
Stanford CA* 94305 Sciences, Bolling AFB DC 20332

B8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
i -

3 ORGANIZATION (If applicabdie)
‘ AFOSR N .. AFOSR-80-0212
4 ' 8c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.
€ PEROGRAM PROJECT TASK WORK UNIT
Bolling AFB DC 20332 LEMENT NO. NO. o o NO.
Cliorr | 230w A

NI . -

11. TITLE (inciude Security Classification)
APPROACHES FOR UPDATING DATABASES WITH INCOMPLETED AINFORMAT[ON AND NULLS

! I:z. PERSONAL AUTHOR(S)

i Arthur Keller and Marianne Winslett Wilkins

r:u TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr, Mo., Day) 15. PAGE COUNT
Reprint FROM T0 April 1984 9

16. SUPPLEMENTARY NOTATION
IEEE Computer Data Engineering Conference Proceedings, April 1984, Los Angeles CA.

COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessar- and identify by block number)
FIELD GROUP SUB. GR.

ORI

s % hamm
. =

19. ABSTRACT (Continue on reverse if necessary and identify by black number)
In this paper we consider approaches to updating databases containing null values and
incomplete information. Our approach distinguishes between modeling incompletely known
:ggrlds and modeling changes in these worlds. As an alternative to the open and closed
Qiorld assumptions, they propose the modified closed world assumption. Along with the
D scussion of updating, they address some issues of refining incompletely specified

¥ C.l?lformat:i.on. (y :
—— - ELECTE :

s AUG 20 1984
—

20 DISTRIBUTION/AVAILABILITY OF ABSTRAGT 21 ABSTRACT SECURITY CLASSIFICATION B '
uNcLASSIFIED/UNLIMITED L same as mey T oTic users O UNCLAZSITIED ;
a »
22¢ NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22¢. OFFICE SYMBOL
tinclude Area Code:

Dr. Robert N. Buchal {20%) 767- 4939
DD FORM 1473, 83 APR EDITION OF 1 JAN 73 1S OBSOLETE

84 05 09 044 T

-

-

< Pty -

[N

AFOSR- TR ~ * '3

Il wo winueT T

Computer Data
Engineering Conf.

Page 1 of 9. April 1984

Los Angeles

Approaches for Updating Databases
With Incomplete Inforination and Nulls
Arthur Keller and Marianne Winslett Wilkins

\

W

Abstract. In this paper we consider approaches
to updating databascs containing null values and in-
complete information. Qur approach distinguishes be-
tween modeling incompletely known worlds and model-
ing changes in thesc worlds. As an alternative to the
open and closed world assumptions, we propose the
modificd closed world assunption. Along with the dis-
cussion of updating, we addrcss some issues of refining
incompletely specificd information.¢—_

Key Words and Phrases. Null values, incomplete
information, updates, databases, rclational databases.

CR Cutegories. H.2.1, H2.3, IL1.1.

1. Introduection

The real world, and a database that models it, varies
over time. At each moment in time, we have a world
state and a corresponding database state. As the
world state changes with time, we want the database
to track these changes. We distinguish between these
two problems, that of modeling an incompletely known
world and of modeling changes in that world. In the
sections below, we first discuss modeling incompletely
known static worlds, with updates serving the purpase
of rcfining the database when more complete informa-
tion is known. Following this discussion, we address
some issucs concerning the use of updatles to handle
changes in the world state.

1a. Why do we have incomplete infermation
about the real worid?

Incomplete information arises from several sources. At
first, in the initial stages of using a new system, not all
of Lhe necessary information may have been captured,
resulting in au incompletely known static world state.

This work wns supported in pary by contract N00039-82.G-0250
{the Knowlcdge Base Management Systems Projeet, Prof. Cio
Wiedcerhold, Principal investigator) from $he Defense Advanced
Research I'rojects Agency and by contract AFOSR-80-0212
(Universal Relationa, I’rof. JeIT Uliman, 1’rincipal Investignator)
from the Air Force Oflice of Scientific Research, both of the
United States Department of Defcnse, and by an ATLT Bell
Laboratories Doctoral Scholarship. The views and conclusions
contained in this document are those of the authors and should
not be interpreted ns representative of the oilicial policies of
DARPA or the US Government.

Authors’ address: Computer Scienee Department, Stanford
University, Stanford, CA 94305,

Stanford University, Computer Science Dept.

Later on, new information may become available in a
piecemeal fashion, resulting in an incompletely specified
change to a world state. In addition, for privacy or
securily rcasons we may not want to store particular
information for certain members of a domain, giving
us an incompletely known static world state. Some
information may be omitted because it is quite ex-
pensive or diflicult to obtain. In a shared database,
the responsibility for capturing the information may
be decentralized. Users’ views may omit information
stored in the database [Chamberlin 75, Stonebraker
75]. Conscquently, view updates [Dayal 82, Keller 82]
often result in incomplete information. Finally, some
attributes may be inapplicable in a particular situation,
indicating that the structure of the database model does
not exactly correspond Lo the structure of the world.

1b. Alternative Worlds

Given an incomplete body of knowledge about a world,
we expeet Lo find multiple worlds satisfying that body
of knowledge. If we consider the body of knowledge to
be a theory, then the possible worlds are models that
satisfy that theory. ‘

We may choose to apply constraints to the relation-
ship betwcen these modcls and the original theory. One
such constraint, known as the open world assuinption,
states that the theory is correct but not necessarily com-
plete. That is, if the negation of a fact can be derived
from the theory, then that fact must be false in all
models. There can be facts truc in some models (and
false in others) that are not conclusively specified in
the theory. This gives us three classes of statements:
those true in all models, those false in all models, and
those truc in some modecls and false in others (hercafier
referred Lo as “true,” “false,” and “maybe” statements
or results, respectively). Ve shall use the term definite
results Lo refer to the “true” and “false” results.

Another constraint, the closed world assuinption
[Reiter 78, 80], states that all relevant information is
given in the database. That is, il a fact cannot be
derived from the theory, its negation mmay be assumed
to hold. A database is consistent, with the closed world
assumplion if the set of facts not derivable from the
database is consistent with the database, taken as a
theory. Definite databases (those not containing dis-
junctiong) arc consistent with the closed world assump-
tion. In particular, databases containing disjunclions

Apy. o

ciztrity

Page 2 of 9.

KELLER and WILKINS

of multiple positive terms are not consistent with the
closed world assumption. Under the closed world as-
sumption, there is only one modc! of the theory, so there
are no “maybe” stateincnts. This is the usual model for
database theories not containing nulls.

A third constraint, developed at length by Levesque
{80, 82], may be called the modified closed world as-
sumption. In this case, the theory may explicitly state
where its knowledge is incomplete. The theory may
contain disjunctions, and as in the opcn world assump-
tion, it may have multiple models. All facts true in any
particular model of a modificd closed world theory must
be derivable either as part of a disjunction explicitly
mentioned in the theory, or else derivable from such
disjunctions. All facts not derivable from such com-
binations of the disjunctions are assumed to be [alse.
This assumption permits “true,” “false,” and “maybe”
statemnents; however, many of the “maybe” statements
in a given database under the open world assumption
will become false under the modificd closed world as-
sumplion. In a relational database, the disjunctions can
appear at four levels: disjunctions of values, of tuples,
of relations, and of databases. Definite database models
of an indefinite database are obtained by choosing one
of each of the disjuncts, provided that the resulting
databasec satisfics all constraints.

In the work below, we restrict our attention to
databases under the modified closed world assumption.
Further, we will only consider the lcast expressive and
most tractible levels of disjunction, those of values and
of tuples with true.

Let us present some examples. Cousider the fol-
lowing database.

Naze Address Telephone
Susan Apt 7 or 12 655-0123
Pat Apt 7 665-9876
Sandy Apt 17 none
Ceorge Apt 9 unknown

Who is in Apt 77 The “true” result is Pat, and the
“maybe” result is Susan.

Is Susan in Apt 7 or Apt 12! We would like
to answer “yes”; alter all, it is nccessarily true that
Susan may be found at one or both of Uliesc addresses.
Howcever, we have a potential problem in that this query
is not equivalent to the disjunction of the queries “Is
Susan in Apt 7! and “Is Susan in Apt 12!; for
the answer to this disjunction is “maybe.” The query
answering algorithm must expend particular effort to
deduce the “yes” answer rather than the “maybe”
answer.

Who does not have a phone starling with 555!

Approaches for Updating Databases With Incomplete Information and Nulls

The “true” result is Sandy, and the “maybe” result is
George.

2. Incompleteness and Relational Databases

How ecan the relational model [Codd 70, 79, 82, Maier
83, Uliman 83] be cxtended to include incomplete in-
formation? Let us assume that the relational model is
capable of representing the relevant portion of the real
world, were the necessary information available. Then
we shall explore extensions to the relational model to
support various levels of incompleteness.

The standard relational model consists of a set of
relation schemas and a sct of constraints. Each relation
schema has a set of labelicd domains calied attributes.
A relation is an unordered set of tuples, each tuple as-
suming a value for each attribute. We will use the term
attribute value to refer to the value of a particular at-
tribule for a specified tuple. First normal form requires
that each attribute for each tuple be an atomic value,
that is, one valuc in its domain.

A simple incompletencss that may exist is that we
may have only partial information available about an
entity whose identity we know. If entity names may
serve as keys to the relation, this corresponds to a tuple
with a known key value, but with non-atomic values
for some attributes. This situation violates first normal
form in that we cannot assign a specific value to every
attribute in the corresponding tuple.

Let us consider the types of such non-atomic values.
The ANSI/X3/SPARC study group for database man-
agement systems specifications generated a list of 14
different manifestations of null values [ANSI 75], for
which we propose a taxonomy as [ollows. First, it
may be that no domain value is applicable for an at-
tribute; consider, for example, the value of Lhe attribute
Supervisor’s-Name for the president of a company. We
call this value inapplicable. The sccond case occurs
when the value is known to be in a particular set of
values, perhaps including inapplicable. This concept of
a st null includes null values specifed as ranges (for ex-
ample, 20 < Age < 30). Using an example from Section
1b, {Apt 7, Apt 12} is a sct null. In the casc where an
attribule is applicable for a tuple but no further infor-
mation is known, the sct null is the entire domain of
the attribute.

Note that the choice of scts as a rcpresentation
formalism nced not be restricted to null values: Any
singlcton sct other than the value inapplicable rep-
resents a non-null value.* We may regard all occuf-
rences of single values as degenerate cases of set nulls.

*Even when the nulls merely signify “no information,” there are
problemns in answering qucties Lo databascs with nulls [Keller 84).

Y
2

5 o o S TP BA < iy D T

ey

e

Page 3 of 9.

Approaches for Updating Databases With Incomplete Information and Nulls

Almost all types of nulls considered in the litcrature are
(possibly restricted) cases of set nulls.

2a. Objects

The concept of objects permits constraints on the
appearance of inapplicable null values in rclational
databases [Goldstein 81, Maier 80, 83, Sciore 80]. In
bricf, a relation can be divided into a set of rclations,
all with the same key or primary attributes, so that
desirable information can be recorded solely by creat-
ing tuplcs without inapplicable [Codd 79, I31-Masri 79,
80, Wicdcrhold 83]. If the logical database design cor-
responds in this manner to the objects identified, and we
assume that no null values are allowed in the primary
attributes for an entity, we will never neced the null value
inapplicable. The possibility of an atiribute being inap-
plicable for a given tuple can be handled by attaching
a condition to the tuple, as described in the next sec-
tion. In the discussion of updates and refinement, we
assume that inapplicable nulls have been climinated in
this fashion.

2b. On Representation of Incompleteness

In this section, we will summarize ways of repre-
sentling alternative worlds. A sct of alternative worlds,
each describable by a relational database, may also be
described by a single database with conditions attached
to tuples. However, it is dillicult to compute solutions to
querics for a database expressed in this form. Therefore,
we also present other representations that are more con-
ducive to manipulation.

Conditional relation This is the most expressive
foem for describing incompleteness in extended rela-
tional databases. A conditional relation is the exten-
sion of an ordinary relation to contain one additional
attribute, a condition to be applied to cach tuple. A
tuple with a condition appended is called a conditional
tuple, and it may appear in query “maybe” results.

We can identify several classes of simple, useful
conditions. The possible condition is for tuples where
no specific information is known about the conditions
under which the tuple will exist. In other words, the
existence of a possible tuple is independent of the state
of the remainder of the database. .

A sccond class consists of scts of altcrnative tuples.
A sct of alternative tuples is called an allernative set.
Preciscly one of the members of an alternative set
must exist in any model of an incomplcte database.
Alternative tuples are simply a generalization of null
values to null tuples, of sct nulls to set tuples. In
contrast to alternative tuples, any number of possible
tuples may hold in auy alternative world.

KELLER and WILKINS

Another class of conditions—called predicated—is
explored by Imiclinski and Lipski [81]. It consists of
expressions built up from atomic conditions using con-
junction, disjunction, and ncgation. The atomic forms
are true, [alse, and comparisons between an attribute
and a dcfinite value or between two attributes. The
largest class—ealled arbitrary—-consists of any rela-
tional expression that can be applied to ordinary rela-
tional databases.

In this paper we will restrict our attention to pos-
sible conditions. Due to space limitations, we cannot
also cover alternative conditions.

Set nulls The inclusion of set nulls in eonditional
relations makes it possible to represent the rclations
more concisely and makos it casier to compute answers
to queries, without increasing the expressive power of
conditional relations.

Predicates DPredicates are data-dependent con-
straints applied to null values. For the purposes of this
paper, the most useful predicate is marked nulls, which
denote known cquality of the actual, unknown values
of nulls. Two marked nulls with the same marking are
known to have the same actual, unknown value, but
two marked nulls with differing marks may or may not
have the same actual, unknown value. More complex
predicates are also possible, but we shall not consider
them here.

3. Updating Incomplete Databases That Model
Static Worlds

Fach incomplete database corresponds to a sct of alter-
native worlds that the database models. When we up-
date an incomplete database, the update will fall into
one of two catcgorics. The first type of update adds
previously unknown information about a static world
situation and genecrates a new sct of alternative worlds
that is a subsct of the original group of alternative
worlds. This type of update is relalively casy to imple-
ment correctly. The second type of update involves
tracking changes in a dynamic world of which we have
incomplete knowledge. Static world knowledge-adding
updates are discussed in this seetion, and the discussion
of dynamic world updates is deferred to Section 4.

It is important to note that under the modified
closed world assumption, any entity that is known G
possibly participate in a rclation should be represented
by a separale tuple in that relation, perhaps with a pos-
sible condition attached. Otherwise, the introduction
of any tuple that implics the participation of thak en-
tity in the relation must be treated as a dynamic world
change-recording update. .

ooy

e ot

Page 4 of 9.

KELLER and WILKINS

There are two concerns in updating an incomplete
database that models a static world. The first of these,
the nature of the updates and how to specify them,
will be discussed in Scction 3a. The sccond concern
is how to assimilate the update into the database via
refinement. Refinement has appeared in the literature
[Imiclinski 83, Maier 83, Osborn 81, Walker 80], and it
will be considered in Section 3b.

8a. Updates in a Statiec World

Updates in incomplete databases modelling static
worlds serve to add knowledge lo the database. There
may be many alternative worlds satislying an incom-
plete static world databasc, and updates may reduce
the number of these possibilities. For example, condi-
tional tuples can have their conditions determined or
augmented. Sect nulls can be updated by eliminating
some alternatives from the sets. Additional predicates,
such as marked nulls, can be imposed on the database.

The first siep in processing an update is to deter-
mine the “true” and “maybe” results of its selection
clause. This is a dilficult problem which will not be
treated here (scc [Codd 79, Maier 83]); the discus-
sion below presupposes a successful resolution of the
query answering problem. We note that syntactic ex-
tensions to the language, with accompanying semantic
definitions, will be necded to designate set nulls. In
addition, the uscr must be able to add and remove pos-
sible conditions in updates in order to satisfy the re-
quircments of the modified closed world assumption and
our postulations regarding the usc of inapplicable null
values.

Under the modified closed world assumption, dele-
tions have no place in a static world. A tuple update
consisting of a dclction followed by an insert operation
will violate the modificd closed world assumption un-
less the two are bundled into the same transaction. We
use the convention that an UPDATE operation specifies
the modification of an entity or rclationship already
in the database, while an INSERT operation supplics
information about a ncw entity or relationship. In a
static world under the modified closed world assump-
tion, UPDATE rcquests are only reasonable to the ox-
tent that they supply additional, non-conflicting infor-
mation about existing entities; INSERT requests arc not
permitted, for there can be no new entities.

With the UPDATE operator, onc may update the
“true” results of a selection clause as usual, with some
extra attention given to handling marks. But what
action should be taken on the “maybe” result of the
sclection clause? In a static world under the modified
closed world assumption, an update can only scrve to
narrow the eange of choices within a sct null. Therefore,

Approaches for Updating Databases With Incomplete Information and Nulls

the first possibility is that the target attribute values
do not alrcady include the new values, in which case
the tuple cannot be in the “true” result of the selection
clause. A sophisticaled query processor might use that
fact to refine certain ficlds of the failing tuple. The
sccond possibility is that the target altribute values do
alrcady include the new valucs, in which case the best
action in our model is simply to ignore the update. The
third possibility is that the old and new attribute values
are sct nulls with a partial overlap in values; in this case
we may try a simple technique called tuple splitting.
Consider the following example.

Vessel HomePort Condition
{Henry, Dahomey)} {Boston, Charleston} true

UPDATE [HomePort := SETNULL ({Boston, Cairo})]
WHERE Vessel = "Henry®

In the result, we have split the original tuple into two
possible tuples. One tuple covers the case that the tuple
is actually in the “truc” result, and the other tuple
covers the “false” result case. If we perform the update,
we could get the following relation.

Vessel HomePort Condition
{Henry, Dahomey} {Boston, Cairo} possible
{Henry, Dahomey} {Boston, Charleston} possible

Note, however, that the Henry could not be in Cairo
because that was not permitted in the original database,
and we are working in a static world under the modified
closed world assumption. This gives us the following
result.

Vessel . HomePort Condition
{Henry, Dahomey} Boston possible
{Henry, Dahomey} {Boston, Charleston} possible

It is a very difficult problem in general to determine
exactly which set nuil values would put a tuple in the
“true” result and which would put it in the “false”
result. However, a smarter query answering algorithm
might be able to produce the following.

Vessol HomePort Condition
Henry Boston possible
Dahomey {Boston, Charleston)} possible

Since there may now bhe zero, one, or two ships, this
method violates the modified closed world assumption
in a static world. This problem may be avoided by using

an alternative sel containing the two tuples, so that’

precisely onc of them will hold. This {attee approach
incurs other problems that are beyond the scope of this

paper.

at

YA e e g TR TP, = TR A~ o - MV 1

gy

o ae et

T e———

e et o

Page 5 of 9.

Approaches for Updating Databascs With Incomplete Information and Nulls

3b. Refinement in a Static World

Refinement is a process that alters the state of the
database without affecting its set of possible worlds. If
coupled with a query answering strategy that gencrates
all possaible worlds and then performs the query on each
of them, refincment may aflect the efliciency of the
computation but not the answers to queries; otherwise,
reflinement may affect the answers.

Relinement simplifies the contents of the database
by applying known dependencies and constraints to
establish conditions on the cxistence of null values
[Vassiliou 80, Lien 79, Maier 83]. This process may al-
low a query answering strategy to provide more infor-
mative auswers to querics. Refincment can also help
to verify the compatibility of updates with static world
databases, thus preventing violations of dependencies
and integrity constraints.

Let us begin by considering functional depen-
dencies. In our model, we can usc these dependencices to
establish when two nulls must have the same mark. For
example, suppose Ship — HomcPort in the following
relation.

Ship HomePort
¥right {Managua, Taipei}
Wright {Taipei, Pearl Harbor}

We may conclude that this is actually the following
relation.

Ship HomePort
¥right Taipel

We have eliminated a null value, enabling us to give
more informative answers to qucries. For example, if
the uscr asks for a list of all ships with a HomePort of
Taipei, then the Wright will be in the “maybe” result for
the unrcfined database, but in the “truc” result for the
refined version. More generally, suppose we are given
a rclation with A — B, containing two tuples with set
nulls #; and sz, as follows.

A B
al ”n
al a

We may refine this to the following single tuple.

A B
al aNaeg

Similarly, if A — B in the following relation, and b1 and
b2 arc known to be uncqual, then we may conclude that
a1 and a2 snust have different values. Indceed, cither or
both of bt and b2 may be sct nulls, as long as the scis
have no elements in common.

KELLER and WILKINS
A B
al b1
a2 b2

If, say, al is a non-null value, then we can replace a2
by a2 —a1. That is, the keys of the two tuples must be
unequal.

Functional dependencies can also be uscd to refine
the conditions appended to tuples. For example, let
A — B in the following relation.

A B Condition
al b1 true
al b1 possible

If a1 is a non-null value, this refines to the following
relation.

A B Condition
al bl true

Refinement helps to catch consistency errors that
are violations of known dependencies. (The refinement
process is similar to the chase algorithm for inference of
dependencies [Ullman 83).) The presence of such errors
is signalled by the appearance of a set null with no
clements (the empty set). For example, if 8, N s in
the examnple above is the empty set, then an error has
occurred. As presented, refinement is not sulficient to
detect all violations of functional deprndencies, nor to
eliminate as many nulls as would be possible with a
more general inechanism.

We have given some simple rules for refining
databases with functional dependencies. One may
define rules in a similar fashion for all varicties of
generalized dependencies.

4. Tracking Changing Worlds

Let us now consider the situation where the database is
modeling a dynamic, changing world. We will discuss
issucs relating to updates and refinement in this context.

4a. Updates in a Changing World

In the discussion below, we consider how to insert tuples
to relations, how to delcte them, and how to do other
kinds of updates. These updates will fall into two cate-
gorics: knowledge-adding updates, which represent new
information about the dynamic world at one particular
moment in time, and change-recording updates, which
track changes in the world over time. We will comt
sider corrcctions as knowledge-adding updates if the
new sct of possible worlds is included in the original;
otherwise they are change-recording updales because
they cauxe a transformation to a different sct of possible
worlds. Equivalently, before performing a knowledge-
adding update, Lthe databasc alrcady modcls the new set

AT T 8 W . 77RO ST, AT, g, T MPTAE W 4 g

7B NS g

prt

s

Page 6 of 9.

KELLER and WILKINS

of possible worlds. Change-recording updates are par-
ticularly difficult to execute correctly, and matters are
complicated by the fact that it is not usually possible to
tell whether an update is knowlcdge-adding or change-
recording. Knowledge-adding updates were discussed in
the previous scction; here we consider change-recording
updates and how to proceed when the type of an update
is unknown.

For example, consider the following relation and
update.

Vessel Port Carge
Dahomey Boston Honey
Wright {Boston, Newport} Butter

INSERT ([Veseel := "Henry", Cargo := "Eggs",
Port := SETNULL ({Cairo, Singapore})]

The result after performing the update on the relation
is as follows.

Vessel Port Cargo
Dahomey Boston Honey
Wright <{Boston, Newport} Butter
Henry <{Cairo, Singapore} Egge

Under the modificd closed world assumption, this is
a change-recording update because the Henry was not
previously known to exist. Unfortunately, change-
recording insert operations can intcract disastrously
with refinement in relations with functional depen-
dencies. (We will discuss this further in Section 4b.)

We use the convention that an UPDATE operation
specifies the modification of an cntity or relationship al-
ready in the database, while an INSERT operation sup-
plies inforination about a new entity or relationship.
It is not alwauys clear whether an assertion should be
treated as an insertion or an update. This is especially
true when the update is specified through natural lan-
guage [Davidson 84].

For other types of updates, tuples in the “true”
result of the sclection clause can be updated as usual.
For “maybec” results, when only set nulls are involved,
the first option is to do nothing and expect the user
to explicitly update the “maybe” result by means of a
truth operator in the sclection clause [Codd 79, Lipski
79), as in the following example. .

UPDATE {[Port := Cairo}
WHERE MAYBE (Port = *Cairo®)

Result:
Vessel Port Cargo
Dahomey Boston Honey

Wright {Boston, Newport} Butter
Henry Cairo Egge

Approaches for Updating Databases With Incomplcte Inforination and Nulls

As a sccond option, the database system can ex-
plicitly ask the user on the fly what to do about the
“maybe” results.

As a third option, we can bravely attempt to
automitically update the “maybe” results. In a model
of conditional tuples and sct nulls, one can use the tuple-
splitting technique of Section 3b. Consider the effect of
a cargo update on the previous relation.

UPDATE {Cargo := "Guns")
WHERE Port = "Boston®

Vessel Port Cargo Condition
Dahomey Boston Guns true
¥right {Boston, Newport} Guns possible
¥right {Boston, Newport)} Butter possible
Henry Cairo Egge true

We have given the original tuple a possible condition,
created a duplicate, and then performed the update in
place on the new tuple. (The two null values {Boston,
Newport} would be given the samc mark.) We have
generated quite a few new alternative worlds for the
database. To reduce this diversification, a clever query
answering algorithm might be able to tell us which set
null values would give rise to “false” result tuples and
which to “true” result tuples. With such an algorithm,
we could give the following result [romn the cargo up-
date.

Vessel Port Cargo Condition
Dahomey Boston Guns {true
Wright Boston Guns possible
¥right Newport Butter possible
Henry Cairo Eggs true

As we have secn, appending possible conditions when
splitting tuples gencrates new possible worlds. The use
of an alternative sct for the split tuples avoids this prob-
lem at the expense of additional complications during
future updates, a consideration beyond the scope of this
paper.

Another potential solution is null propagation,
where ficlds that are the target of an update are trans-
formed into sct nulls. The following serics of examples
illustrates this technique.

AB c <
A B ¢ ‘
vi {v2, v3) v2 .

v .

UPDATE [A := C)
WHERE B = C .

Using null propagation, we obtain the following relation

™ - EET A TR Ar .

TPy

T oo o 7 R W | A TA g T T AT | ey

e e ey

= T rmadhe gyt L e e

Page 7 of 9.

Approaches for Updating Databases With Incomplete Information and Nulls

AB.

A B
{v1, v2} {(v2, v3}
{'1. '3} {'2. '3}

However, the set of possible worlds corresponding to
this dalabase is disjoint from the correct sct of possible
worlds. Splitting the original tuple into two altcrnative
tuples, we obtain the following rclation AB (before the
update).

A B Condition

141 v2 alternative set 1

vl v3 alternative set 1

The updated relation then becomes the following.
A B Condition

v2 v2 alternative set 1

v3 v3 alternative set 1

To delcte a tuple that is in the “maybe” result,
one could append the possible condition and refine the
tuple. Consider the following relation and update.

ship Port
{Jenny, Wright} {Boston, Caire}

DELETE WHERE Ship = "Jenny®

With a somewhat clever query algorithm, we can first
split the tuple as follows.

Ship Port Condition
Jenny {Boston, Cairo} alternative set 1
¥right {Boston, Cairo} altcrnative set 1

We thien delete the fiest tuple as requested. Notice that
the second tuple changes from an alternative tuple to a
possible tuple,

Ship Port Condition
¥right {Boston, Cairo} possible

Deletion under the modified closed world assump-
tion is a very strong statement; a deletion based on a
key value is equivalent to declaring that the entity is no
longer in the world. To delete a relationship between
entitics that continue to cxist, it is betler to replace
the original relationship with one or more relationships
containing nulls. If this is done, the original cntities will
continue to be known, but they will be unrelated.

In the next scction, we will consider refinement in
the face of change-recording updates.

4b. Refinement in a Changing World

In a static world, rcfinement is a sale process; in a
dynamic world, refinement must only be done at a cor-
rect static state. For a correct final dynamic world

KELLER and WILKINS

databasc state to be achicved, conflicting updates must
be supplied in the right order, and refinement must not
be done until all change-recording updates correspond-
ing to the same point in time have been acecpted—-in
other words, until the database corresponds to an actual
static world state.

In a static world, refinement does not affcct the
set of possible worlds; rather, it affects the difficulty
of computing the set of possible worlds. On the other
hand, updates can reduce the sct of possiblc worlds. In
a static world, a refined databasc is equivalent to its
unrefined version, in that they give the same answers to
all querics. Note, however, that refinement may assist a
query answering stralcgy to produce a more informative
answer, even though the databases are equivalent.

In a dynamic world, refinement may affcct the set
of worlds possible after an update. Given a database,
reflinement can produce a second cquivalent database,
but after identical updates, the refined and unrefined
updated databases may no longer be equivalent {Fagin
83, Kuper 84).

The problem with refincment can arise when at-
tempting to store facts that are general rules in the
database along with facts that are merely statcmnents
of current conditions. For example, suppose that the
Kranj and the Totor alternate between Victoria and
Vancouver. Thus, one of these two ships is always in
Vancouver. llowever, we also know what the Totor is
currently in Victoria. This results in the following rela-
tion.

Ship Location
{Xranj, Totor} Vancouver
Totor Victoria

The relation alter rcfinement follows.

Ship Location
Kranj Vancouver
Totor Victoria

Suppose that the Totor moves to Vancouver. This
changes the relation as follows.

Ship Location
Kranj Vancouver
Totor Vancouver

But if we apply the update to the unrcfined relation, w

get a diflercent relation. :
Ship Location

{Kranj, Totor} Y“ancouver *
Totor Vancouver

Notice that thia relation admits Lthe posaibility that the
Kran) hias moved Lo Victoria. This example shows Yhat

Page 8 of 9.

KELLER and WILKINS

refinement can cause some worlds not to be possible
when the database undergoes a change-recording up-
date.

§. Summary and Conclusion

We have considered how databases can be used to model
incomplete knowledge about the world. Given a body
of incomplete knowledge, there is a sct of possible
worlds that are consistent with that knowledge. The
modified closed world assumption allows the database
to explicitly state where its information is incomplete.
If the database provides a definite answer to a query,
we want that answer to hold in the rcal world that
the database is modeling. Where knowledge is lack-
ing, the database may have to indicate that the answer
is “maybe.” We would like the database to provide
definite answers whenever possible. An answer to a
query which is true in all possible world models of the
database is considered the “truc” result. Similarly, the
“false” result is not true in any possible world. That
which is true in some worlds and false in others is in the
“maybe” result. Some query answering strategies may
not be able to find all the “true” and “false” results to
some queries, and instead report an expanded “maybe”
result.

We have considered extensions to thc relational
database model 1o support incompletencss. Conditional
relations, which consist of tuples whose existence is de-
pendent on some condition, are suflicient to express
all incomplcteness that can be modcled by a set of al-
ternative worlds each completely expressible by a rela-
tional database. Unfortunately, generating alternative
worlds or answering queries for conditional relations is
quite complex. On the other hand, sct nulls present a
mcthod for handling incomplete information for which
simpler query answering strategies exist. However, set
nulls alone do not have the expressive power of condi-
tional relations. The expressive power of set nulls can
be enhanced by using predicates which the database
must satisfy. Equality predicates, usually modeled by
marked nulls, are one important form. Another uscful
extension is to allow sets of alternative tuples. Exactly
one tuple of each such set must exist in any model of
the database.

In updating databases that modecl incomplete
worlds, we distinguish between knowledge-adding up-
dates, which reduce the sct of possible worlds, and
change-recording updates, which reflect other chauges
in the set of possible worlds. The former may be
deseribed as providing a more complete model of a static
world; they mcrely narrow down the set of possible
worlds. On the other hand, a change-recording update
marks a transition to a new sct of possible worlds, and

Approaches for Updating Databascs With Incomplete Information and *ulls

is very diflicult to perform with an acceptable degree
of precision. This problem is exacerbated by the inter-
actions between refinement and change-recording up-
dates.

6. Acknowledgements

Jeff Ullman and Gio Wiederhold provided advice, en-
couragement, and support. Christos Papadimitriou
gave extensive constructive criticism and suggestions.

7. Bibliography

[ANSI 75] “ANSI/X3/SPARC Study Group on
DBMSs Interim Report,” in SIGMOD FDT
Bullctin, 7:2, 1975. (Fourteen reasons for null
values also in Atzeni and Parker, “Assumptions
in Relational Database Theory,” in Proc. of the
ACM Symp. on Principles of Database Systcms,
(Los Angeles), March 1982.)

[Chamberlin 75] D. D. Chamberlin, J. N. Gray, I L.
Traiger, “Views, Authorization, and Locking, in
a Reclational Data Base System,” Proc. National
Computer Conference, AFIPS, 1975.

[Codd 70] E. F. Codd, “A Relational Model for Large
-Shared Data Banks,” Comm. of the ACM, 13:6,
June 1970, pp. 377-387.

[Codd 79] E. F. Codd, “Extending the Database
Relational Model to Capture More Meaning,”
ACM Trans. on Databasc Systems, 4:4, Deccrmber
1979.

[Codd 82] E. F. Codd, “Relational Database: A
Practical Foundation for Productivity,” Comm.
ACM, 25:2, February 1882. This is Codd's 1981
Turing Award Lecture.

{Davidson 84] James E. Davidson, “A Natural
Language Interface for Performing Database
Updates,” IEEL Computer Soc. Computer Data
Engincering Conf., (Los Angeles), April 1984.

[Dayal 82] U. Dayal and P. Bernstein, “On the
Correct Translation of Update Operations on
Relational Views,” ACM Trans. on Database
Systems, 7:3, September 1982,

|[El-Masri 79] Ramez El-Masri and Gio Wicderhold,
“Data Models Integration using the Structural
Model,” 'roc. of the 1979 SIGMOD Conference,
ACM SIGMOD, Boston, Junc 1979.

|[El-Masri 80] Rame: El-Masri, On the Deciign,

Use, and Integration of Data Modcls, Ph.D.
dissertation, Stanford University, 1980. .
[Fagin 83] Ronald Fagin, Jeffrey D. Ullman, . and
Moshe Y. Vardi, “On the Scmantics of Updates
in Databases,” Proc. of the Second ACM Symp.
on Principles of Database Systems, (Allanta, GA),

March 1983.

"

Approaches for Updaling Databases With Incomnplete Information and Nulls

[Goldstein 81] Billie S. Goldstein, “Constraints on
Null Values in Relational Databases,” in Proc. 7th
Int. Conf. on Very Large Data Bases, (Cannes,
Francc), September 1981.

(Imielinski 81] Tomasz Imiclinski and Witold Lipski,
Jr., “On Representing Incomplete Information in
a Relational Database,” in Proc. 7th Int. Conf.
on Very Large Data Bases, (Cannes, France),
September 1981.

[Imiclinski 83] T. Imiclinski and W. Lipski, Jr.,
“Incomplete Information and Dcpendencies in
Relational Databases,” in Proc. of Annual Meeting:
SIGMOD and Database Week, (San Jose, CA),
May 1983; the proceedings appeared as SIGMOD
Record, 13:4, ACM, May 1983.

(Keller 82] Arthur M. Keller, “Updates to Relational
Databases Through Views luvolving Joins,” in
Improving Databasc Usability and Responsiveness,
Peter Scheuermann, ed., Academic Press, New
York, 1982.

[Keller 84] Arthur M. Kcller, “Some Problems of Null
Completion in Relational Databases,” submitted
for publication.

[Kuper 84] Gabricl M. Kuper, Jeffrey D. Ullman, and
Moshe Y. Vardi, “On the Equivalence of Logical
Databases,” Proc. of the Third ACM Symp.
on Principles of Database Systems, (Waterloo,
Ontario, Canada), April 1984,

[Levesque 80] H. J. Levesque, “Incompleteness in
Knowledge Bases,” I’roc. of the Wourkshop on Data
Abstraction, Databases and Conceptual Modcling,
(Pingree Park, Co.), June 1980, also ACM SIGART
Newslctier, No. 74, January 198].

iLevesque 82] MH.). Levesque, “A Formal Treatmeut
of Incomplete Knowledge Bases,” Computer Sys.
Research Group, Tech. Rep. CSRG-139, Univ. of
Toronto, Ph.D. diss., February 1982.

[Lien 79) Y. Edmund Lien, “Multivalucd Dependencies
with Null Values in Relational Data Bases,” in
Proc. 5th Int. Conf. on Very Large Data Bases,
(Rio de Janiero, Brasil), October 1979.

[Lipski 78] W. Lipski, Jr, “On Semantic
Issues Connected with Incomplete Information

Page 8 of 8.

e, s, i, A SN I e 2. AR s i oMM

KELLER and WILKINS

Databascs,” ACM Trans. on Databasc Systems,
4:3, Scptember 1979.

[Maier 80] D. Maicr, “Discarding the Universal
Instance Assumption: Preliminary Results,” Proe.
XP1 Workshop on Relational Datahase Theory,
(Stony Brook, NY), July 1980.

{Maier 83] D. Maicer, Theory of Relational Dav.bases,
Computer Science Press, Rockville, MD, 1983.
(Fspecially Chapter 12, “Null Valucs, Partial
Information, and Database Semantics.”)

[Osborn 81] S. Osborn, “luscrtions in a Multi-relation
Database With Nulls,” Proc. of COMPSAC 81:
IEEE Cowmputer Socicty’s Fifth Int. Computer
Software and Applications Conference, (Chicago),
November 1981.

[Reiter 78] Raymond Reiter, “On Closed World
Databases,” in Logic and Databascs, Gallaire and
Minker, eds., Plenum, New York, 1978.

[Reiter 80} Raymond Rciter, “Data Bases: A
Logical Perspective,” in Proc. Workshop on Data
Abstraction Databases and Conceptual Modeling,
(Pingrec Park, CQ), June 1980, apprared as
SIGMOD Record, 11:2, February 1981.

[Sciore 80] Edward Sciore, The Universal Instance
Assumaption and Database Design, Ph.D.
dissertation, Princcton University, October 1980.

[Stonebraker 75] Michael Stonebraker, “Implementa-
tion of lategrity Constraints and Views Ly
Query Modification,” IP’roc. of the 1975 SIGMOD
Conference, (San Josc), June 1975.

[Ullman 83] Jeflrey . Ullman, Principles of Database
Systems, Computer Scicnce Press, Potomac, MD,
second edition, 1983.

[Vassiliou 80} Yannis Vassiliou, “Functional Depen-
dencies and Incomplete Information,” in Proc. 6th
Int. Conl. on Very Large Data Bases, (Montreal),
October 1980.

[Walker 80] A. Walker, “Time and Space in a Lattice
of Universal Relations with Blank Entries,” Proc.
XP! Workshop on Rclational Database Theory,
(Stony Brook, NY), July 1980.

[Wiederhold 83] Gio Wicderhold, Database Design,
McGraw-Hill, New York, sccond cdition, 1983.

’l‘ taconsion For]
DET1S GEARD

- P pITe TAB R
= LS ¥ (]

' Caereovized]
("’o ,-,"' ’ j Jacer oot ionw.__A.A_;—__;'
.y S T -
) S S S
N Lo sssitatton/) .

¥
Ave et ity Codey

Avenloasesel

' .
"‘:;]‘ ! oortal

LN}

PSR S NG S

